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1. Duality between semiantlehalns and unichaln coverings.

In this paper we study the relationship between semiantichains and unicbain
coverings in direct products of partial orders. Semiantichains are more general
objects than antichains, and unichains are a restricted class of chains. The study
of antichains (collections of pairwise unrelated elements) in partially ordered sets
admits two approaches. The earlier arises from Sperner's theorem 1321, which
characterizes the maximum-sized antichains of a Boolean algebra. In general,
Sperner theory obtains explicit values for the maximum size of antichains in par-
tially ordered sets having special properties, and explicit descriptions of their com-
position. When the poset is ranked and the maximum-sized antichain consists of
the, ank with most elements, the poset has the Sperner property: Generalizations
of Sperner's theorem have mostly consisted of showing that various posets have
the Sperner property or stronger versions of the Sperner property. Greene and
Kleitman [13J have given an excellent survey of results of this type.

Dilworth's theorem [41 bounds the size of the largest antichain by another
invariant of the partial order. In particular, covering the partial order by chains is
a "dual" minimization problem. No chain hits two elements of an antichain, so a

.covering always requires more items than any antichain has. Dilworth's theorem
asserts that in fact the optimum sizes are always equal. The result does not give
the extremal value or extremal collections, but it applies to all partially ordered
sets. Generalizations of Dilworth's theorem have flowed less freely. A number of
alternate proofs have been given, e.g. 131, 1101, but the only broad extension we
have is Greene and Kleitman's result 1121 on k-families and k-saturated partitions.

The study of k-families began with Erdos. A k-family in a partially ordered
set is a collection of elements which contains no chain of size k + 1. An antichain
is a 1-family. Erdos [61 generalized Sperner's theorem by showing that the largest
k-family in a Boolean algebra consists (uniquely) of the k largest ranks. A (ranked)
partial order satisfying this for all k is said to have the 'strong Sperner property".
Again, further Sperner-type results on k-families can be found in 113). Clearly
any -chain contains at most k elements of a k-family, so any partition C of a
partial order into chains (C,) gives an upper bound of mh(C) = min {k, ICI)

, on the size of the largest k-family, If the largest k-family has this size, the
partition is called k-saturated. Greene and Kleitman proved there always exists
a k-saturated partition, which for k = 1 reduces to Dilworth's theorem. They
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showed further that for any k there exists a partition which is simultaneously k
and k + I-saturated. They applied lattice methods generalizing Dilworth's less
well-known result 151 about the lattice behavior of antichains. Saks 130] gave a
shorter proof of the existence of k-saturated partitions of P by examining the
direct product of P with a k-element chain.

We consider a generalization of the Dilworth-type idea of saturated parti-
tions to the direct product of any two partial orders. Sperner theory has also
discussed direct products. A semiantichain in a direct product is a collection of
elements no two of which are related if they are identical in either component.
The class of semiantichains includes the class of antichains. If the largest semi-
antichain still consists of a single rank, then the direct product has the two-part
Sperner property. Results or this nature have been proved by Katona [21), 1231,
Kleitman [24), and Griggs (151, [IT, with extensions to k-families by Katona 1221,
Schonheim [311, and recently by Proctor, Saks, and Sturtevant (271. Examples
where maximum-sized semiantichains are not antichains were examined by West
and Kleitman 1331 and G. W. Peck [26).

To generalize Dilworth's theorem to semiantichains we need a dual cover-
ing problem. Semiantichains are more general objects than antichains, so we
need more restricted objects than chains. We define a unichain (one-dimensional
chain) in a direct product to be a chain, in which one component remains fixed.
Alternatively it is the product of an element from one order with a chain from the
other. Two elements on a unichain are called unicomparable. Clearly no semian-
tichain can contain two elements of a unichain, so the largest semiantichain is
bounded by the smallest covering by unichains. After [33), West and Saks conjec-
tured that equality always holds. We have not proved equality for general direct
products, but we prove a special case here. Also, we make a stronger conjecture
analogous to Green and Kleitman's simultaneous k and k + 1-saturation. If one
of the partial orders is a chain of k + I elements, the conjecture reduces to their
result.

Note that maximizing semiantichains and minimizing unichain coverings
are dual integer programs. One such formulation has as constraint matrix the
incidence matrix between elements and unichains. Showing that the underlying
linear program has an integral optimal solution would prove the conjecture, by
guaranteeing that the integer program has no 'duality gap*.
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These dual programs form an example of the frequent duality between "pack-
ing" problems and 'covering" problems (see 11, (21, (7, (81, [111, (191, 1251, (29).
Dilworth's theorem is another example; Dantzig and Hoffman 13) deduced it from
duality principles. Hoffman and Schwartz [20) also used integer programming
ideas to prove a slight generalization of Greene and Kleitman's k-saturation result
by transforming the problem into a transportation problem. These methods work
partly because any subset of a partial order is still a partial order. However, a
subset of a direct product need not be a direct product. Indeed, subsets of direct
product orders frequently have duality gaps between their largest semiantichains
and smallest unichain coverings. (The smallest example is a particular 7-element
subset of the product of a 2-element chain with a 3-element chain.)

Dilworth's theorem can also be proved by transforming it to a bipartite
matching problem or a network flow problem (see 191, 1101). The difficulty in
applying these latter methods to direct products is that unicomparability, unlike
comparability, is not transitive. Much is known about the integrality of optima
when the constraint matrix is totally unimodular, balanced, etc., as summarized
by Hoffman 1181. Unfortunately, none of the several integer programming for-
mulations we know of for this direct product problem have any of those properties.

Finally, Greene and Kleitman use lattice theoretic methods because the set of k-
families and maximum k-families form well behaved lattices. We have found no
reasonable partial order on semiantichains or maximum semiantichains.

In the case where the largest semiantichain is also an antichain, network
flow methods can be used to prove the conjecture. This result will appear in a
subsequent paper. In Section 2 we find necessary and sufficient conditions for
equality to hold when semiantichains and unichain coverings are required to have
a particularly nice property called "decomposability". When this happens, the
size of the optimum is determined by the sizes of the largest k-families in the two
components. In Section 3 we develop the stronger form of the conjecture and show
it holds in this case. We note with boundless ambition that if the first conjecture
is true we can begin to ask about the existence of "k-saturated partitions" of
direct products into unichains, analogously to k-saturated partitions of posets.

Before embarking on the subject of decomposability, we note that this duality
question can be phrased as a problem in graph theory. The 'comparability graph'

of a partially ordered set is formed by letting (z, V) be an edge in G(P) if z
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is related to V in P. An antichain becomes an independent set of vertices; a
chain becomes a complete subgraph. Dilworth's theorem states that the inde-
pendence number O(G) equals the clique covering number O(G). When we take
direct products, the "unicomparability graph" is just the product graph G(P) X
G(Q).* Now independent sets are semiantichains and cliques are unichains, and
again we want to show a = 9. Comparability graphs are perrect graphs, but it is
not true in general for products of perfect graphs that a =9 . (Example X 1,
where the left factor is perfect, but not a comparability graph.) We can ask for
what subclasses of perfect graphs does a(G X H) = O(G X H)?

2. Decomposability.
We consider semiantichains and unichain coverings which arise from parti-

tions of the component orders. We will use d(P, Q) to denote the size of the
largest semiantichain in P X Q.

Partition P and Q into collections of antichains A and B. Any matching of
antichains in .4 with antichains in B induces a semiantichain when the complete
direct product of each matched pair is included. An antichain which can be
formed in this way is called decomposable.

Given partitions of P and Q into antichains, it is a simple algebraic conse-
quence that the largest decomposable semiantichain we can form from them is
obtained by matching the largest from each, then the next largest, and so on. We
call this the "greedy product" of two partitions, and its size is

g(.4,B) = "IAiIBdI, where A, ?_ A +1 and B _! Bi+s.
i

Now partition P and Q into collections of chains C and P. This induces a
unichain covering of P X Q. For each pair (C,, Dj), we cover the sub-product Ci X
Dj. It is easy to see we do this with fewest unichains if we take min{ICi, IDj.)
copies of the longer chain. Again, a unichain covering so formed is called a
decomposable covering. Its size, a "pairwise minimum" function generalizing mr,
*Independence number = size of largest set of mutually non-adjacent vertices. Clique
covering number = size of smallest collection of complete subgraphs which together
touch all vertices. Product graph G X H has as vertices the Cartesian product of the
vertex sets of G and H. (u, v) and (u', ') are joined by an edge if u = ' and (u, V) is
an edge of H or v = and (u, u') is an edge in G.

5
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m(C, D)= E min(iCI, IDyI).

Using Greene and Kleitman's terminology, we let dt(P) denote the size of
the largest k-family in P and put Ah(P) = d(P) -- dk-t(P). Let AP.,&Q =

XA A(P)AA(Q). (We note this is a quantity which appears independently in

129J, where Saks proved d,(P X Q) <_ AP . AQ.)
To further simplify notation, let a, and bi be the size of the i-th largest an-

tichains in A and B. Since g(A, B) depends only on the sizes in the partition, we
will speak interchangeably of g(A, B) and g((aj), (b).) even if there is no decom-

position corresponding to those numbers.

Theorem 1. For any antichain partitions A and B and chain partitions C and D

of partial orders P and Q,

(0) glA, B) <5A -A < rmlC, D).

Furthermore, equality holds on the left if and only if

(2) at > a+l j* i b= dk(Q).

(3) b, = bk+ and ah = ah+ = XX<, ai - d(P) or E<,bi -- d=(Q).

Also, equality holds on the right if and only if

(4) Ak(P) > Ak+i(P) = D is k-saturated, and C is t-saturated whenever D
has a chain of size 1.

Equality on the right is also equivalent to the statement obtained by exchanging

D with C and Q for P in (4).

Proof. The first inequality holds by the same argument that made the greedy

product the best way to match up antichains. Increasing ah (beginning with k =

6
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1, then 2, etc.) by shifting units from smaller ai can only increase g, since those
units will be paired with larger bi than before. We must find an upper bound on

this process.

The union of k antichains forms a k-family, so (ai) is a non-increasing

sequence with <ai < dh (P) -- < k Ah. Similarly for bi. So, we increase V

aj to Aj(P) and b, to A1 (P), then increase a2 and b2 , etc., until ak = Ak(P)
and b = AA(Q). It is important to note that Ah > Ak+i, a non-trivial result

proved in [121. This guarantees that the non-increasing character of the sequences

will be preserved by the process. If we begin with an actual partition (A, B), we
end with A(P). A(Q) without decreasing the value of g.

When will equality hold? If (aj), (b,) are the sequences for A and B and

,a is less than dk(P) for some k with bk > bt+I, we can increase g by
increasing al at the expense of the smallest ai. (Technically, we increase d, for
the smallest j such that a- a=.) If ah = ak+ and bt = bA+1, but both
initial segments sum to less than the respective dk, there will be room to gain

by making such a change in both sequences simultaneously. On the other hand,

if (1)-(3) are never violated, all the (legal) switches made to reach AP. AQ will
leave them satisfied and produce no gain, so equality holds.

The second inequality is more subtle. We need more notation. Let a&(C) be
the number of chains in partition C which have at least k elements. If a partition of

P is simultaneously (k - I)- and k-saturated, by definition mj-.1(C) = dk-1(P)
and mk(C) = dk(P). Subtracting the first from the second yields ah(C) = A(P).
So, if a completely saturated partition exists, the number of chains with exactly

k elements will always be A(P) - Ak+I(P). Let Ph(P) = AA(P) - AA,+I(P).
Next we cite the discrete analogue of integration by parts. Assuming the

boundary terms vanish,

ukj(VA - Vk +I) = F(Uk - Uk_-)O
A k

for Uk, plug in dk of one partial order, and for uh use AA of the other. Since

#A; - Ak - Ak+I, we have

d(P)3k(Q) = ZA&hu-iAh(Q) = P(P)dk(Q). (5)

By grouping pairs of chains appropriately, it is easy to see

,mc, (D) = m(C, D) m1D,1(C) (6)

7



Now let C' be a collection of chains with Ph(P) of size k and D' a collection
with Ph(Q) chains of size k. C' and D' may not exist as chain decompositions
of P and Q, but as we did with antichains we can still apply the function m to
those collections of chain sizes. In particular, C' and D" behave like completely
saturated partitions, with nk(C*) - d(P) and mk(D') = d4(Q). Applying this
to (6), we get

Sdh (P)P(Q) m(CD)= DPjt(P)dk (Q). (7)

When we use D rather than D, the first half of (6) gives

m(C*, D) P (P)mk(D) P Z13k(P)d(Q) (8)

with equality if and only if D is k-saturated whenever 13k(P) > 0, i.e., when
Ah(P) > Ak+,(P). Similarly m(C,D') > m(C',D*).

Now, if y&(D) is the number of chains in D of size k, the other half of (6)
gives

m(C', D) = mk(C')&(D) = d(P),yk(D). (19)

Replacing C' by an actual partition C gives

,r(C, D) mk.,(C)7k(D) > dk(P).7k(D), (10)

equations (5)-(10) combine to give

m(C, D) > m(C', D) > m(C', D') - Ak(P).k(Q). (11)

For equality to hold every step of the way, the conditions are as stated in the
theorem, i.e., saturation requirements when PI and 'yk are non-zero. Note that
passing through m(C,D') gives us the other set of conditions. The two are
equivalent. a

Of course, if equality holds on both sides ot (0) the desired duality holds.
It has not been shown that the conditions for equality hold when the extremal
semiantichain and unichain covering are both decomposable. Even if they do, the
extremal packing and covering are not always decomposable, although there al-
ways exists a maximal decomposable semiantichain (i.e., no larger semiantichain

8
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contains it). Furthermore, the size of the optimal semiantichain and unichain
covering may be strictly greater or strictly less than AP • AQ. The first example of
a direct product with no decomposable maximum-sized semiantichain was found
by Saks [28). Pictured in Figure 1, it has AP. AQ = 13, but the largest semian-
tichain has 14 elements, as indicated. The smallest example we know of is the
product in Figure 2(a). The largest decomposable semiantichains have 9 elements,
but it is not hard to find one of size 10, namely (la, lb, Ic, 2d, 2e, 2f, 3d, 3e, 3b, 3c),
indicated by large dots. Meanwhile, m(21,2211) = 10. The unichain covering is
indicated by heavy lines. However, when a slight change is made to reach Figure
2(b) (adding the relation 3 > 1), the semiantichain of size 10 disappears. Now the
largest semiantichain is decomposable (g(21,411) = 9), but the smallest unichain
covering is not.

[Figure 1]

[Figure 2]

The usefulness of decomposable objects is that the extremal value among
such objects can be computed quickly. For unichain coverings we can consider
the broader class of quasi-decomposable coverings. These fix a partition of only
one of the partial orders, then match each chain in that partition with some
partition of the other order. We do best by providing a k-saturated partition for
each k-chain. Then, if Q had the fixed partition, the size of the induced covering
is E dk(P)'yk(P). In the proof above, this is m(C*, D), so such coverings are also
bounded by A P . AQ.

In this broader class less is required for equality. In particular, if one of
the orders has a completely saturated partition, D becomes D' and there is a
quasi-decomposable unichain covering of size AP . AQ. Unfortunately Figure 2b
shows that even when both P and Q have completely saturated partitions, there
need not be a semiantichain of this size. Here duality still holds, though, because

* the minimum covering is not even quasi-decomposable, but is smaller yet. As
with decomposable coverings, the optimum quasi-decomposable covering is easily
computed. Not all chain partitions D of Q need be considered; chain partitions
whose sequences are refinements of others are always dominated by the latter.
In general, any covering by disjoint unichains can be expressed by partitioning
the direct product into suitable sub-products such that the covering is the union

L9



of decomposable coverings of the sub-products. However, this formulation is
unwieldy. Quasi-decomposable coverings give a quick near-optimal value which
can help reduce the search for the optimal.

As for the usefulness of decomposability, we see that products of posets with
completely saturated partitions will have unichain coverings of size AP. AQ. Note
also that when the partial orders can be decomposed into antichains of sizes Ak,
there will be a decomposable semiantichain of size AP. AQ. This condition says
the largest k-families are obtained by uniting the first k of some sequence of
antichains. (This is not always true; in the poset of Figure 3 no largest 2-family
contains a largest 1-family.)

In particular, strongly Sperner posets satisfy the the latter condition. Suffi-
cient to imply the strong Sperner property is the LYM property. (For a survey of

results on LYM orders, see [13] once again.) The question of whether LYM orders
always have completely saturated partitions remains open (see [14], [16]). If so,
then products of LYM orders would have this 'two-part Dilworth property". In
any case equality certainly holds for products of symmetric or skew chain orders,
etc., which are 9trongly Sperner and have completely saturated partitions.

3. Magic triples.
We now discuss the analogue of a "simultaneously k and (k + 1)-saturated

partition" for direct products.
We define a magic triple* (S,U1,z) in a direct product P X Q to be a

maximum-sized semiantichain S, a minimum-sized unichain covering 11, and an
element z in P or Q satisfying the following properties.
(1) z is the fixed element of unichains in 11 the same number of times it is a

component of elements in S.
(2) When z is deleted, the restrictions of $ and L to the smaller direct product

are still extremal.

Conjecture. A magic triple exists for every P X Q, and hence the duality
conjecture follows by induction on IPI + IQI.
*Such a triple was originally called a "Catholic cucumber" due to late-night slurring of
"the element is Q-crossed as many times as it is Q-covered.'
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Of course, if the duality conjecture is true in general, then property (2) above
will hold whenever property (1) holds. Showing that implication holds without
assuming the duality conjecture would make it easier to show magic triples always

exist

The magic triple conjecture is particularly satisfying because, although in-
ductive, it is symmetric in P and Q. In their proof, Greene and Kleitman had
to consider two cases, corresponding to whether the element z belongs to P or
to Q. The conjecture also explains the peculiarity in their result of guaranteeing

simultaneous k and (k + 1)-saturation but being unable to guarantee more at
one time. (The usual example that more cannot be guaranteed simultaneously is
"little H" in Figure 1.)

If Q is a (k + 1)-chain, then any semiantichain in P X Q 'projects down" to
a (k + 1)-family in P of the same size, since it uses k + 1 disjoint antichains of
P in the k + I "copies" of P. Conversely, any (k + 1)-family in P gives rise to
(several) semiantichains of that size, so dk+1(P) = d(P, Q). A unichain covering
of P X Q collapses to a partition C of P by collapsing the unichains that vary in
Q to their fixed elements in P. Since Q can be covered by a single chain, such
an element of P need not appear in any other unichain. If the unichain covering
is minimal, the same chain decomposition of the remaining elements of P will be
used in each of the k + I copies of P in P X Q, and all the P-unichains. used will
have at least k + 1 elements. So, the bound mk+1(C) given by the corresponding
partition C of P has the same size as the unichain covering.

Suppose magic triples exist, and hence duality holds. By the discussion above,
the minimum unichain C is (k + 1)-saturated. If the magic triple for P X Q has
its "element" z in Q, then C is also k-saturated. If z is in P, we use induction
on JPJ. Obtaining a k and (k + 1)-saturated partition and corresponding k and

(k + l)-families for P - z, we add z to the families and as a single element chain
to the partition. The properties of a magic triple guarantee the resulting partition
of P is k and (k + 1)-saturated, and the resulting collections are largest k and

(k + 1)-families.

Note that we have required a triple. It may be that for any extremal
semiantichain or unichain covering there exists an example of the other that with
it will form a triple. However, it is not true that any pair (S, L) will extend to a
triple. For example, when the partial order of Figure 3 is crossed with itself, there

II
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are (among others) two largest semiantichains and two largest unichain coverings
which extend to triples when paired correctly but not when paired the other way.

[Figure 3)

If a pair (S, U) admits a sequence of elements such that successive restrictions
of this pair form magic triples until the partial orders are exhausted, we call them
completely mutually saturated. Theorem 2 is a sufficient condition for complete

mutual saturation which applies to products of partial orders satisfying the con-
ditions for equality in Theorem 1. It would be nice to strengthen this theorem
by remoring the words "or the same size", i.e., to show that if a maximum-sized

jsemiatGichain and minimum-sized unichain covering are both decomposable, then
t'..y have the same size.

Also, we note that the converse of the theorem is false, as shown by the
examples in Figure 2. The (S, U) pairs shown are not decomposable, but they are
completely mutually saturated. The correct sequence of elements to be eliminated
starts with (3) in Figure 2a and with (1) in Figure 2b. Then the reduced pair
(S', W) (see proof below) are decomposable, and the theorem can be applied to
complete the sequence.

Theorem 2. If a direct product order has a largest semiantichain and a smallest
unichain covering of the same size which are both decomposable, then they are

completely mutually saturated.

Proof. The element chosen to complete the magic triple can be any element
on the chain which is shortest of both partitions. Let S be the semiantichain
(induced by A and B), U the unichain covering (induced by C and D), and assume

C has the shortest chain so z E P. Then we claim D must be 1-saturated, and z
appears in some antichain paired with the maximum-sized antichain of Q in S.
We show this will make it a magic triple. When z is removed, what remains of

S and U will be extremal and decomposable for (P - z) X Q, so we can repeat
this until the orders are exhausted.

Let A' and C' be the reduced antichain and chain partitions of P - z, and
let d(P, Q) denote the size of the largest semiantichain in P X Q. d(P - z, Q) is

12



bounded from above by the reduced decomposable covering, which gives the first
inequality below. The middle equality follows since z lies on the shortest chain.
That is, when C and D induce a unichain covering, the elements on the shortest
chain always appear as fixed elements crossed with a longer chain in the other
order. Removing such an element removes from the count the number of chains
in D. So we have

d(P - x, Q) :_ m(C', D) = m(C, D) - IDI = 1111 - IDI. (12)

On the other hand, d(P - z, Q) is bounded from below by the restriction of
S, giving the first inequality below. The second follows because in A X B = S,
z must be paired with some antichain in B, which has at most d1(Q) elements.
Finally, since D is a partition it has at least dl(Q) chains, by Dilworth's theorem.
This gives us

d(P--z,Q) _ g(A',B) _ g(AB)-d(Q) IS- IDI. (13)

Since ISI = 1UJ, all the inequalities in (12) and (13) become equalities. In
particular, ID! = dl(Q), and di(Q) is the size of the antichain matched with z's
antichain. Also, m(C', D) = y(Al, B), so (S, U, z) is a magic triple, S' and U1 are
decomposable and equal, and the argument can be applied to (P - z) X Q to
complete the desired sequence of elements. a

We close with the only example we have yet found where neither the max-
imum semiantichain nor the minimum unichain covering is decomposable. One
factor is the order *Big H" devised by Saks and mentioned previously. The other
is an example devised by Griggs 116J to show lack of implication among various
poset properties. After much worry, we found the semiantichain and unichain
coverings both of size 40 pictured in Figure 4. Again the elements of the semian-
tichain appear as heavy dots, one on each unichain. Elements labeled 4 or 5 in
the direct product are covered by unichains which are copies of 4 or 5 element
maximal chains in 'Big H". Although not decomposable, this pair still extends
to a magic triple by selecting either of the two points of highest degree (marked
z) in "the fish". After they are removed, the reduced semiantichain and unichain
covering are still extremal but no longer extend to a magic triple. We are left with
four disjoint products, including two copies of Saks' example and two selections of

13
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a 2-family from "Big H'. By choosing different extremal pairs, we can continue
finding magic triples until the orders are exhausted.

(Figure 41

14



Referents$

1II V. Chvital, 'On certain polytopes associated with graphs,' Centre de Re-
cherches Mathimatiques - 238. Universit6 de Montr~al, October 19T2.

121 V. Chvitai, 'Edmonds polytopes and a hierarchy of combinatiorial prob-
lems," Discrete Math. 5 (1973), 305-337.

13) G. B. Dantsig and A. J. 11offman, "Dilworth's theorem on partially ordered
sets,* in Linear Inequalities and Related Systems, Annalis of Mathematics
Study No. 38, 11. W. Kuhn and A. W. Tucker (eds.), Princeton University
Press, Princeton, N.J. (1956), 207-214.

141 R. P. Dilworth, 8A decomposition theorem for partially ordered sets,' Ann.
of Mathematics 51 (1950), 161-166.

151 R. P. Dilworth, 'Some combinatorial problems on partially ordered sets,'
in Combinatorial Analysis, R. Bellman and M. Hall (eds.), Proceedings of
Symposium on Applied Math., Amer. Math. Soc., Providence (1960), 85-
90.

181 P. Erdos, *On a lemma of Littlewood and Offord,' Bulletin of the American

Mathematical Society 5 1(1945), 898-902.

171 J. Edmonds, "Covers and packing& in a family of sets,"m Bulletin of the

American Mathematical Society 68 (1962), 494-499.

18) J. Edmonds, "Submodular functions, matroids, and certain polyhedra,* in
Combinatorial Structures and Their Applications, Proceedings Calgary Int.
Conference 1969, Gordon and Breach, N.Y. (1970), 69.

(91 L. R. Ford, Jr., and D. R1. Fulkerson, Flows in Net works, Princeton Univer-
sity Press (1962).

1101 D. R. Fulkerson, 'Note on Dilworth's decomposition theorem for partially
ordered sets,' Proceedings, American Mathematical Society 7 (1956), 701-
T02.

[111 D. R. Fuikerson, 'Anti-blocking polyhedra,' J. Combinatorial Theory 12
(1972), 5071.

15



1121 C. Greene and D. J. Kleitman, 'The structure of Sperner k-families,' J.
Combinatorial Theory 20 (1976) 1, 41-68.

1131 C. Greene and D. J. Kleitman, 'Proof techniques in the theory of finite
sets,' in Studies in Combinatorics, G.-C. Rota, ed., Studies in Mathematics
(17), Mathematical Association of America, (1978), 22-79.

114) J. R. Griggs, 'Sufficient conditions for a symmetric chain order,* SLAM J.
Applied Math. 32 (1977), 807-809.

115] J. R. Griggs, "Another three-part Sperner theorem,* Studies in Applied
Math. 58 (1977).

(161 J. R. Griggs, 'On chains and Sperner k-families in ranked posets'" preprint.

1171 J. R. Griggs and D. J. Kleitman, 'A three-part Sperner theorem,* Discrete
Math. 17 (1977), 281-289.

118) A. J. Hoffman, 'The role of unimodularity in applying linear inequalities to
combinatorial theorems,* preprint.

(191 A. J. Hoffman and J. B. Kruskal, Jr., 'Integral boundary points of con-
vex polyhedra,' Linear Inequalities and Related Systems, Annals of Math.
Study 38, Princeton University Press (1956), 223-246.

1201 A. J. Hoffman and D. E. Schwartz, 'On partitions of a partially ordered
set,' J. Cornbinatorial Theory (B) 23 (1977), 3-13.

(21) G. 0. 11. Katona, 'On a conjecture of Erdos and a stronger form of Sperner's
theorem,' Studia Sci. Math. Hungar. 1 (1966), 59-63.

122) G. 0. H1. Katona, 'A generalization of some generalizations of Sperner's
theorem,* J. Combinatorial Theory 12 (1972), 72-81.

123) G. 0. If. Katona, 'A three part Sperner theorem,' Studia Sci. Math.
Hungar. 8 (1973), 379-390.

(24) D. J. Kleitman, "On a lemma of Littlewood and Offord on the distribution
of certain sums,' Math. Z. 90 (1965), 251-259.

16



(251 G. L. Nemhauser and L. E. Trotter, Vertex pickings: structural properties
and algorithms,* Technical Report No. 210, Operations Research Dept.,
Cornell University, January 1974.

(261 G. W. Peck, 'Maximum antichains of rectangular arrays,* J. Combinatorial
Theory (A) 27 (1979), 39T-400.

12 71 R. Proctor, M. Saks, and D. G. Sturtevant, *Product partial orders with
the Sperner property,' preprint.

128) M. Saks, private communication.

129J M. Saks, "Duality properties of finite set systems,* Ph.D. thesis, Mass. last.
of Technology.

1301 M. Saks, "A short proof of the existence of k-saturated partitions of a
partially ordered set," Advances in Mat hematics 33 (1979), 207-21 1.

1311 J. Schonheim, 'A generalization of results of P. Erdos, G. Katona, and D.
J. Kleitman concerning Sperner's theorem,' J. Combinatorial Theory (A)

132J E. Sperncr, 'Emn Satz iiber Untermenge einer endlichen Menge,'

133) D. B. West and D. J. Kleitman, 'Skew chain orders and sets of rectangles,'
Discrete Mat hematics 27 (1979), 99-102.

17



6 x AB I

5~~4 5xBEF G H

DEH x2 3fx CD D E> F

I HI B >C

A

g(2211x32211) 13 AlF)A

14 =m(33, 522) = m(411, 522) = d(P,q)

iFigure 1. "Little H" x"Big H".
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2 d e f d e f

a b c 1 a b

V-AJ

AP' = (21-42) = 10

d(P,Q) m(21,2211) 10 d(P,Q) = g(21,411) g(21,33)= 9

(a) (b)

Figure 2. Non-decomposability.

Figure 3. "M over W
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